El hidrógeno es un elemento químico representado por el símbolo H y con un número atómico de 1. En condiciones normales de presión y temperatura, es un gas diatómico (H2) incoloro, inodoro, insípido, no metálico y altamente inflamable. Con una masa atómica de 1,00794(7) u, el hidrógeno es el elemento químico más ligero y es, también, el elemento más abundante, constituyendo aproximadamente el 75% de la materia visible del universo.[1]
En su ciclo principal, las estrellas están compuestas por hidrógeno en estado de plasma. El hidrógeno elemental es muy escaso en la Tierra y es producido industrialmente a partir de hidrocarburos como, por ejemplo, el metano. La mayor parte del hidrógeno elemental se obtiene "in situ", es decir, en el lugar y en el momento en el que se necesita. El hidrógeno puede obtenerse a partir del agua por un proceso de electrólisis, pero resulta un método mucho más caro que la obtención a partir del gas natural.
Sus principales aplicaciones industriales son el refinado de combustibles fósiles (por ejemplo, el hidrocracking) y la producción de amoníaco (usado principalmente para fertilizantes).
El isótopo del hidrógeno más común en la naturaleza, conocido como protio (término muy poco usado), tiene un solo protón y ningún neutrón. En los compuestos iónicos, el hidrógeno puede adquirir carga positiva (convirtiéndose en un catión llamado hidrón, H+, compuesto únicamente por un protón, a veces acompañado de algún neutrón); o carga negativa (convirtiéndose en un anión conocido como hidruro, H-).
El hidrógeno puede formar compuestos con la mayoría de los elementos y está presente en el agua y en la mayoría de los compuestos orgánicos. Desempeña un papel particularmente importante en la química ácido - base, en la que muchas reacciones conllevan el intercambio de protones (iones hidrógeno, H+) entre moléculas solubles. Puesto que es el único átomo neutro para el cual la ecuación de Schrödinger puede ser resuelta analíticamente, el estudio de la energía y del enlace del átomo de hidrógeno ha sido fundamental para el desarrollo de la mecánica cuántica.
Descubrimiento del hidrógeno
El hidrógeno diatómico gaseoso, H2, fue formalmente descrito por primera vez por T. Von Hohenheim (más conocido como Paracelso, 1493-1541) que lo obtuvo artificialmente mezclando metales con ácidos fuertes. Paracelso no era consciente de que el gas inflamable generado en estas reacciones químicas estaba compuesto por un nuevo elemento químico. En 1671, Robert Boyle redescubrió y describió la reacción que se producía entre limaduras de hierro y ácidos diluidos, y que generaba hidrógeno gaseoso.[3]
En 1766, Henry Cavendish fue el primero en reconocer el hidrógeno gaseoso como una sustancia discreta, identificando el gas producido en la reacción metal - ácido como "aire inflamable" y descubriendo que la combustión del gas generaba agua. Cavendish tropezó con el hidrógeno cuando experimentaba con ácidos y mercurio. Aunque asumió erróneamente que el hidrógeno era un componente liberado por el mercurio y no por el ácido, fue capaz de describir con precisión varias propiedades fundamentales del hidrógeno. Tradicionalmente, se considera a Cavendish el descubridor de este elemento.
En 1783, Antoine Lavoisier dio al elemento el nombre de hidrógeno (en francés Hydrogène, del griego ὕδωρ, ὕδᾰτος, "agua" y γένος-ου, "generador") cuando comprobó (junto a Laplace) el descubrimiento de Cavendish.
En el artículo teoría del flogisto se narra un poco más acerca de esta historia.
Papel del hidrógeno en la Teoría Cuántica
Gracias a su estructura atómica relativamente simple, consistente en un solo protón y un solo electrón para el isótopo más abundante (protio), el átomo de hidrógeno posee un espectro de absorción que pudo ser explicado cuantitativamente lo que supuso un punto central del modelo atómico de Bohr que sirvió como un hito en el desarrollo la Teoría de la Estructura Atómica. Además, la consiguiente simplicidad de la molécula de hidrógeno diatómico y el correspondiente catión dihidrógeno, H2+, permitió una comprensión más completa de la naturaleza del enlace químico, que continuó poco después con el tratamiento mecano - cuántico del átomo de hidrógeno, que había sido desarrollado a mediados de la década de 1920 por Erwin Schrödinger y Werner Heisenberg.
Uno de los primeros efectos cuánticos que fue explícitamente advertido (pero no entendido en ese momento) fue una observación de Maxwell en la que estaba involucrado el hidrógeno, medio siglo antes de que se estableciera completamente la Teoría Mecano - Cuántica. Maxwell observó que el calor específico del H2, inexplicablemente, se desviaba del correspondiente a un gas diatómico por debajo de la temperatura ambiente y comenzaba a parecerse cada vez más al correspondiente a un gas monoátomico a temperaturas muy bajas. De acuerdo con la Teoría Cuántica, este comportamiento resulta del espaciamiento de los niveles energéticos rotacionales (cuantizados), que se encuentran particularmente separados en el H2 debido a su pequeña masa. Estos niveles tan separados impiden el reparto equitativo de la energía calorífica para generar movimiento rotacional en el hidrógeno a bajas temperaturas. Los gases diatómicos compuestos de átomos pesados no poseen niveles energéticos rotacionales tan separados y, por tanto, no presentan el mismo efecto que el hidrógeno.[4]
Sólo hay un elemento en la tabla periódica que no pertenezca a ningún grupo en particular: el hidrógeno. Este elemento tiene una química singular. Además sus tres isótopos difieren tanto en sus masas moleculares que las propiedades físicas y químicas son sensiblemente diferentes.
hidrogeno
domingo, 21 de noviembre de 2010
materiales de construcción
Orígenes
Desde sus comienzos, el ser humano ha modificado su entorno para adaptarlo a sus necesidades. Para ello ha hecho uso de todo tipo de materiales naturales que, con el paso del tiempo y el desarrollo de la tecnología, se han ido trasformando en distintos productos, mediante procesos de manufactura de creciente sofisticación. Los materiales naturales sin procesar (arcilla, arena, mármol) se suelen denominar materias primas, mientras que los productos elaborados a partir de ellas (ladrillo, vidrio, baldosa) se denominan materiales de construcción.
No obstante, en los procesos constructivos, muchas materias primas se siguen utilizando con poco o ningún tratamiento previo. En estos casos, estas materias primas se consideran también materiales de construcción propiamente dichos.
Por este motivo, es posible encontrar un mismo material englobado en distintas categorías: por ejemplo, la arena puede encontrarse como material de construcción (lechos o camas de arena bajo algunos tipos de pavimento), o como parte integrante de otros materiales de construcción (como los morteros), o como materia prima para la elaboración de un material de construcción distinto (el vidrio, o la fibra de vidrio).
Los primeros materiales empleados por el hombre fueron el barro, la piedra, y fibras vegetales como madera o paja.
Los primeros materiales manufacturados por el hombre probablemente hayan sido los ladrillos de barro (adobe), que se remontan hasta el 13.000 a. C,[1] mientras que los primeros ladrillos de arcilla cocida que se conocen datan del 4.000 a. C.[1]
Entre los primeros materiales habría que mencionar también tejidos y pieles, empleados como envolventes en las tiendas, o a modo de puertas y ventanas primitivas.
Además, es conveniente que los procesos de manufactura requeridos consuman poca energía y no sean excesivamente elaborados. Esta es la razón por la que el vidrio es considerablemente más caro que el ladrillo, proviniendo ambos de materias primas tan comunes como la arena y la arcilla, respectivamente.
Los materiales de construcción tienen como característica común el ser duraderos. Dependiendo de su uso, además deberán satisfacer otros requisitos tales como la dureza, la resistencia mecánica, la resistencia al fuego, o la facilidad de limpieza.
Por norma general, ningún material de construcción cumple simultáneamente todas las necesidades requeridas: la disciplina de la construcción es la encargada de combinar los materiales para satisfacer adecuadamente dichas necesidades.
Propiedades de los materiales • Propiedades físicas: • Densidad: relación entre la masa y el volumen • Higroscopicidad: capacidad para absorber el agua • Coeficiente de dilatación: propiedad de aumentar o disminuir su tamaño dependiendo de la temperatura • Conductividad térmica: facilidad con que un material permite el paso del calor • Propiedades mecánicas (para conocerlas se realizan ensayos en la fábrica) es comportamiento del material ante fuerzas extremas: • Resistencia mecánica: capacidad de los materiales para soportar esfuerzos de tracción, compresión, torsión y flexión • Elasticidad • Plasticidad
El propósito de esta regulación es doble: por un lado garantiza unos estándares de calidad mínimos en la construcción, y por otro permite a los arquitectos e ingenieros conocer de forma más precisa el comportamiento y características de los materiales empleados.
Las normas internacionales más empleadas para regular los materiales de construcción son las normas ISO.
En España existe la entidad certificadora AENOR con el mismo propósito.
El principal componente de la arena es la sílice o dióxido de silicio (SiO2). De este compuesto químico se obtiene:
También se utilizan alquitranes y otros polímeros y productos sintéticos de diversa naturaleza. Los materiales obtenidos se usan en casi todas las formas imaginables: aglomerantes, sellantes, impermeabilizantes, aislantes, o también en forma de pinturas, esmaltes, barnices y lasures.
Desde sus comienzos, el ser humano ha modificado su entorno para adaptarlo a sus necesidades. Para ello ha hecho uso de todo tipo de materiales naturales que, con el paso del tiempo y el desarrollo de la tecnología, se han ido trasformando en distintos productos, mediante procesos de manufactura de creciente sofisticación. Los materiales naturales sin procesar (arcilla, arena, mármol) se suelen denominar materias primas, mientras que los productos elaborados a partir de ellas (ladrillo, vidrio, baldosa) se denominan materiales de construcción.
No obstante, en los procesos constructivos, muchas materias primas se siguen utilizando con poco o ningún tratamiento previo. En estos casos, estas materias primas se consideran también materiales de construcción propiamente dichos.
Por este motivo, es posible encontrar un mismo material englobado en distintas categorías: por ejemplo, la arena puede encontrarse como material de construcción (lechos o camas de arena bajo algunos tipos de pavimento), o como parte integrante de otros materiales de construcción (como los morteros), o como materia prima para la elaboración de un material de construcción distinto (el vidrio, o la fibra de vidrio).
Los primeros materiales empleados por el hombre fueron el barro, la piedra, y fibras vegetales como madera o paja.
Los primeros materiales manufacturados por el hombre probablemente hayan sido los ladrillos de barro (adobe), que se remontan hasta el 13.000 a. C,[1] mientras que los primeros ladrillos de arcilla cocida que se conocen datan del 4.000 a. C.[1]
Entre los primeros materiales habría que mencionar también tejidos y pieles, empleados como envolventes en las tiendas, o a modo de puertas y ventanas primitivas.
[editar] Características
Los materiales de construcción se emplean en grandes cantidades, por lo que deben provenir de materias primas abundantes y baratas. Por ello, la mayoría de los materiales de construcción se elaboran a partir de materiales de gran disponibilidad como arena, arcilla o piedra.Además, es conveniente que los procesos de manufactura requeridos consuman poca energía y no sean excesivamente elaborados. Esta es la razón por la que el vidrio es considerablemente más caro que el ladrillo, proviniendo ambos de materias primas tan comunes como la arena y la arcilla, respectivamente.
Los materiales de construcción tienen como característica común el ser duraderos. Dependiendo de su uso, además deberán satisfacer otros requisitos tales como la dureza, la resistencia mecánica, la resistencia al fuego, o la facilidad de limpieza.
Por norma general, ningún material de construcción cumple simultáneamente todas las necesidades requeridas: la disciplina de la construcción es la encargada de combinar los materiales para satisfacer adecuadamente dichas necesidades.
Propiedades de los materiales • Propiedades físicas: • Densidad: relación entre la masa y el volumen • Higroscopicidad: capacidad para absorber el agua • Coeficiente de dilatación: propiedad de aumentar o disminuir su tamaño dependiendo de la temperatura • Conductividad térmica: facilidad con que un material permite el paso del calor • Propiedades mecánicas (para conocerlas se realizan ensayos en la fábrica) es comportamiento del material ante fuerzas extremas: • Resistencia mecánica: capacidad de los materiales para soportar esfuerzos de tracción, compresión, torsión y flexión • Elasticidad • Plasticidad
[editar] Regulación
En los países desarrollados, los materiales de construcción están regulados por una serie de códigos y normativas que definen las características que deben cumplir, así como su ámbito de aplicación.El propósito de esta regulación es doble: por un lado garantiza unos estándares de calidad mínimos en la construcción, y por otro permite a los arquitectos e ingenieros conocer de forma más precisa el comportamiento y características de los materiales empleados.
Las normas internacionales más empleadas para regular los materiales de construcción son las normas ISO.
En España existe la entidad certificadora AENOR con el mismo propósito.
[editar] Nomenclatura
Puesto que los productos deben pasar unos controles de calidad antes poder ser utilizados, la totalidad de los materiales empleados hoy día en la construcción están suministrados por empresas. Para los materiales más comunes existen multitud de fábricas y marcas comerciales, por lo que el nombre genérico del material se respeta (cemento, ladrillo, etc). Sin embargo, cuando el fabricante posee una parte importante del mercado, es común que el nombre genérico sea sustituido por el de la marca dominante. Este es el caso del fibrocemento (Uralita), del cartón yeso (Pladur), o de los suelos laminados (Pergo). Tampoco es inusual que determinados productos, bien sea por ser más específicos, minoritarios, o recientes, sólo sean suministrados por un fabricante. En estos casos, no siempre existe un nombre genérico para el material, que recibe entonces el nombre o marca con el que comercializa. Esta situación se produce frecuentemente en materiales compuestos (como en algunos paneles sandwich) o en composites muy especializados.[editar] Tipos
Atendiendo a la materia prima utilizada para su fabricación, los materiales de construcción se pueden clasificar en diversos grupos:[editar] Arena
Se emplea arena como parte de morteros y hormigonesEl principal componente de la arena es la sílice o dióxido de silicio (SiO2). De este compuesto químico se obtiene:
- Vidrio, material transparente obtenido del fundido de sílice.
- Fibra de vidrio, utilizada como aislante térmico o como componente estructural (GRC, GRP)
- Vidrio celular, un vidrio con burbujas utilizado como aislante.
[editar] Arcilla
La arcilla es químicamente similar a la arena: contiene, además de dióxido de silicio, óxidos de aluminio y agua. Su granulometría es mucho más fina, y cuando está húmeda es de consistencia plástica. La arcilla mezclada con polvo y otros elementos del propio suelo forma el barro, material que se utiliza de diversas formas:- Barro, compactado "in situ" produce tapial
- Cob, mezcla de barro, arena y paja que se aplica a mano para construir muros.
- Adobe, ladrillos de barro, o barro y paja, secados al sol.
- Ladrillo, ortoedro que conforma la mayoría de paredes y muros.
- Teja, pieza cerámica destinada a canalizar el agua de lluvia hacia el exterior de los edificios.
- Gres, de gran dureza, empleado en pavimentos y revestimientos de paredes. En formato pequeño se denomina gresite
- Azulejo, cerámica esmaltada, de múltiples aplicaciones como revestimiento.
- Lodo bentonítico, sustancia muy fluida empleada para contener tierras y zanjas durante las tareas de cimentación
[editar] Piedra
La piedra se puede utilizar directamente sin tratar, o como materia prima para crear otros materiales. Entre los tipos de piedra más empleados en construcción destacan:- Granito, actualmente usado en suelos (en forma de losas), aplacados y encimeras. De esta piedra suele fabricarse el:
- Adoquín, ladrillo de piedra con el que se pavimentan algunas calzadas.
- Mármol, piedra muy apreciada por su estética, se emplea en revestimientos. En forma de losa o baldosa.
- Pizarra, alternativa a la teja en la edificación tradicional. También usada en suelos.
- Grava, normalmente canto rodado.
- Cal, Óxido de calcio (CaO) utilizado como conglomerante en morteros, o como acabado protector.
- Yeso, sulfato de calcio semihidratado (CaSO4 · 1/2H2O), forma los guarnecidos y enlucidos.
- Escayola, yeso de gran pureza utilizado en falsos techos y molduras.
- Cemento, producto de la calcinación de piedra caliza y otros óxidos.
- Terrazo, normalmente en forma de baldosas, utiliza piedras de mármol como árido.
- Piedra artificial, piezas prefabricadas con cemento y diversos tipos de piedra.
- Fibrocemento, lámina formada por cemento y fibras prensadas. Antiguamente de amianto, actualmente de fibra de vidrio.
- Mortero
- Mortero monocapa, un mortero prefabricado, coloreado en masa mediante aditivos
- Hormigón, que puede utilizarse solo o armado.
- Hormigón, empleado sólo como relleno.
- Hormigón armado, el sistema más utilizado para erigir estructuras
- GRC, un hormigón de árido fino armado con fibra de vidrio
- Bloque de hormigón, similar a un ladrillo grande, pero fabricado con hormigón.
- Cartón yeso, denominado popularmente Pladur por asimilación con su principal empresa distribuidora.
- Lana de roca, usado en mantas o planchas rígidas como aislante térmico.
[editar] Metálicos
Los más utilizados son el hierro y el aluminio. El primero se alea con carbono para formar:- Acero, empleado para estructuras, ya sea por sí solo o con hormigón, formando entonces el hormigón armado.
- Aluminio, en carpinterías y paneles sandwich.
- Zinc, en cubiertas.
- Titanio, revestimiento inoxidable de reciente aparición.
- Cobre, esencialmente en instalaciones de electricidad y fontanería.
- Plomo, en instalaciones de fontanería antiguas. La ley obliga a su retirada, por ser perjudicial para la salud.
[editar] Orgánicos
Fundamentalmente la madera y sus derivados, aunque también se utilizan o se han utilizado otros elementos orgánicos vegetales, como paja, bambú, corcho, lino, elementos textiles o incluso pieles animales.- Madera
- Contrachapado
- OSB
- Tablero aglomerado
- Madera cemento
- Linóleo suelo laminar creado con aceite de lino y harinas de madera o corcho sobre una base de tela.
[editar] Sintéticos
Fundamentalmente plásticos derivados del petróleo, aunque frecuentemente también se pueden sintetizar. Son muy empleados en la construcción debido a su inalterabilidad, lo que al mismo tiempo los convierte en materiales muy poco ecológicos por la dificultad a la hora de reciclarlos.También se utilizan alquitranes y otros polímeros y productos sintéticos de diversa naturaleza. Los materiales obtenidos se usan en casi todas las formas imaginables: aglomerantes, sellantes, impermeabilizantes, aislantes, o también en forma de pinturas, esmaltes, barnices y lasures.
- PVC o policloruro de vinilo, con el que se fabrican carpinterías y redes de saneamiento, entre otros.
- Suelos vinílicos, normalmente comercializados en forma de láminas continuas.
- Polietileno muy usado como barrera de vapor, tiene también otros usos
- Poliestireno empleado como aislante térmico
- Poliestireno expandido material de relleno de buen aislamiento térmico.
- Poliestireno extrusionado, aislante térmico impermeable
- Polipropileno como sellante, en canalizaciones diversas, y en geotextiles
- Poliuretano, en forma de espuma se emplea como aislante térmico. Otras formulaciones tienen diversos usos.
- Poliéster, con él se fabrican algunos geotextiles
- ETFE, como alternativa al vidrio en cerramientos, entre otros.
- EPDM, como lámina impermeabilizante y en juntas estancas.
- Neopreno, como junta estanca, y como "alma" de algunos paneles sandwich
- Resina epoxi, en pinturas, y como aglomerante en terrazos y productos de madera.
- Acrílicos, derivados del propileno de diversa composición y usos:
- Metacrilato, plástico que en forma trasparente puede sustituir al vidrio.
- Pintura acrílica, de diversas composiciones.
- Silicona, polímero del silicio, usado principalmente como sellante e impermeabilizante.
- Asfalto en carreteras, y como impermeabilizante en forma de lámina y de imprimación.
- nuevos materiales

Los materiales inteligentes son materiales que poseen la capacidad de responder de forma controlada y reversible a estímulos externos (físicos o químicos). Dicha capacidad se manifiesta modificando alguna de sus propiedades. Se pueden denominar también materiales activos o materiales multifuncionales.
Los materiales inteligentes poseen innumerables aplicaciones en el sector aeroespacial y militar. Por ellos mismos, o en combinación con otros, pueden tener aplicaciones como sensores o actuadores de uso en ingeniería, arquitectura, doméstico, señalización, prevención y servicios.
Clasificación y funcionamiento
Atendiendo al comportamiento que poseen ante un estímulo externo (físico o químico), podríamos clasificar los materiales inteligentes en:
a) Materiales electroactivos y magnetoactivos.
b) Materiales fotoactivos o fotolumiscentes.
c) Materiales cromoactivos
d) Materiales con memoria de forma.
A continuación describimos brevemente cada uno de ellos.
a) Materiales Electro y Magnetoactivos
Son aquellos que actúan, responden o reaccionan ante cambios eléctricos o magnéticos. Normalmente se utilizan en sensores.
b) Materiales Fotoluminiscentes o fotoactivos
Los materiales fotoactivos o fotoluminiscentes son aquellos capaces de responder de una manera diferenciada a ser expuestos a la luz (solar o artificial).
Los materiales fotoluminiscentes, los podemos desglosar en: Fluorescentes, fosforescentes y electroluminiscentes.

Fluorescentes: son aquellos materiales que poseen la propiedad de emitir luz cuando son expuestos a radiaciones del tipo ultravioleta, rayos catódicos o rayos X. Las radiaciones absorbidas (invisibles al ojo humano), son transformadas en luz visible, o sea, de una longitud de onda mayor a la incidente. Su efecto cesa tan pronto como desaparece la fuente de excitación.
Fosforescentes: son aquellos materiales capaces de emitir luz después de haber sido excitados mediante luz (natural o artificial). Su emisión de luz continúa después de que la fuentes de excitación ha sido cesada. Esto último es lo que los diferencia de los fluorescentes.
Electroluminiscentes: son los materiales que al ser estimulados mediante electricidad responden produciendo luces de diferentes colores. Su emisión de luz no conlleva producción de calor.
c) Materiales cromoactivos
Los materiales capaces de responder con un cambio de color ante un estímulo externo (presión, radiación UV, rayos X, temperatura,..etc) se denominan Cromoactivos.
Se pueden clasificar en: fotocrómicos, termocrómicos y electrocrómicos

Fotocrómicos: son aquellos materiales que cuando incide sobre ellos la luz solar, o luz con elevado componente UV, cambian de forma reversible su color. El color desaparece cuando cesa la excitación. Estos materiales no se ven en la oscuridad. Sus aplicaciones fundamentales es en temas de seguridad (tinta invisible, detección de documentos), en temas publicitarios (carteles, camisetas, zapatos, cordones, bolsos, folletos...etc) y en óptica (lentes).
Termocrómicos: son materiales que cambian reversiblemente de color con la temperatura. Permiten seleccionar el color y el rango de temperaturas, con lo que permiten un rango muy amplio de aplicaciones. Normalmente son de naturaleza semiconductora. Su aplicaciones fundamentales es señalización (etiquetado/control temperatura-cadena frío-), seguridad (tuberías y conducciones, elementos peligrosos, etc...), artículos del hogar (envases microondas, sartenes, placas calefactoras, vasos-jarras, ..etc) y juguetería.
Electrocrómicos: son los materiales que al aplicarles una diferencia de potencial, cambia su espectro de absorción y, generalmente, su color.
d) Materiales con Memoria de Forma
Son materiales que una vez han sido deformados son capaces de volver a sus forma primaria.
Se pueden clasificar según el tipo de fuerza aplicada al material: campos térmicos o magnéticos
Las aleaciones de NITINOL (níquel-titanio), son las más conocidas, y responden ante campos térmicos. Se utilizan en ortodoncia (alambres dentales), medicina, robótica, válvulas, ...etc.
jueves, 18 de noviembre de 2010
materiales de embalaje
disponer en balas o dentro de cubiertas). || 2. Caja o cubierta con que se resguardan los objetos que han de transportarse.
Un material de embalaje para el aparato de la reacción del contacto del líquido/del gas, particularmente para los sistemas de la purificación del gas, que consiste en una pluralidad de barras paralelas dispuestas en un portador cesta-formado y así que dimensionó que tiene una forma aproximadamente esférica o esferoide. El portador consiste preferiblemente en los anillos paralelos de diámetros escalonados. El material de embalaje según la invención tiene un grado extraordinario alto de eficacia y es muy fácil y relativamente barato de fabricar.
Un tipo de embalaje para cada objeto
Entre los materiales más utilizados para guardar los enseres destacan las cajas de cartón corrugado triple A, ya que soportan un gran peso -hasta 300 kilos en los modelos más resistentes-, las formas de protección son diversas y se pueden usar para guardar muebles y objetos durante períodos prolongados, al no deformarse. Este aspecto resulta muy útil si el mobiliario y demás enseres se almacenan en un guardamuebles, un espacio que alquilan numerosas empresas de mudanzas.
No obstante, siempre que se empleen cajas, conviene que no sean demasiado grandes, para poder levantarlas con facilidad, y que se refuercen con dos bandas de cinta adhesiva cruzadas en la base. Respecto a los muebles antiguos u obras de arte que requieren un cuidado especial, se embalan con un cartón resistente, pero más delicado que el corrugado, para evitar que se rayen.
El plástico termoinflado o de burbuja está indicado para proteger elementos de decoración, ordenadores, televisiones, vidrios, mármoles y objetos frágiles en general, que después se recubren con cartón corrugado.
Otros productos de embalaje se venden en spray, como las espumas inyectadas, con una buena resistencia a los impactos. Se utilizan para rellenar los espacios que puedan quedar en las cajas. Cuando haya que embalar plantas, la espuma de goma es muy útil para enroscar el tallo. Los objetos más delicados se protegen con cajas o bolsas acolchadas en el interior con espuma.
El pluriball es otro material específico para determinados objetos. Es un papel de seda afelpado con una textura suave, idónea para cubrir platería, jarrones finos, vajilla y cristal.
En cualquier caso, cajas, cartones, plásticos y demás recipientes de embalaje deben quedar adheridos de forma correcta por medio de precintos o cuerdas, de manera que quede el mínimo espacio entre el elemento y el embalaje. El agarre para el transporte ha de ser resistente para evitar que se pueda soltar.
embalaje
Suscribirse a:
Comentarios (Atom)
